Synthesis of Robust Full Poincaré Polarization States via Spatial Coherence Engineering

Author:

Zhang Ruihui1,Zhang Ming1,Dong Zhen1,Wang Fei1,Cai Yangjian2,Chen Yahong1ORCID

Affiliation:

1. School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China

2. Shandong Provincial Engineering and Technical Center of Light Manipulation & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China

Abstract

The full Poincaré (FP) beam, encompassing all possible polarization states in its beam cross-section, has demonstrated advantages in various applications. However, conventional FP beams are typically considered as spatially fully coherent, rendering them sensitive to disturbances in the propagation path and susceptible to speckle effects. In this work, we propose an alternative approach to synthesize the optical beam with a FP polarization state through the spatial coherence engineering of a partially coherent beam. In this process, the FP polarization state is initially encoded into the spatial coherence structure of the beam source. We demonstrate that during the encoding process, the vector nature of the beam transitions from the FP polarization state to the spatial coherence structure of the source. However, during the propagation of the partially coherent beam, the vectorness reverts to the polarization state, resulting in the re-emergence of the encoded FP polarization in the output plane. We illustrate that the synthesized FP polarization state, achieved through spatial coherence engineering, is highly robust against obstructions in the propagation path. Furthermore, we examine the effect of the spatial coherence area of the beam on the quality of the recovered FP polarization state. The findings of this work can have valuable applications in optical trapping and optical imaging in complex environments.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment

Undergraduate Training Program for Innovation and Entrepreneurship, Soochow University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3