Analysis and Experiment of Laser Wireless Power Transmission Based on Photovoltaic Panel

Author:

He TiefengORCID,Zheng GuoliangORCID,Liu Xing,Wu Qingyang,Wang Meng,Yang Can,Lv ZhijianORCID

Abstract

A photovoltaic panels is a device used for converting solar and other energy into electrical energy. In laser wireless power transmission, there is a problem that the conversion efficiency of the photovoltaic panel is not as high as that of a single photovoltaic cell, and the output power is not as large as expected. This is not conducive to the popularization and use of wireless power transmission via laser. It is important to find out why the output power of the photovoltaic panel irradiated by lasers is not high. According to the laser intensity distribution equation, it is deduced that the laser in a very small area has an equivalent uniformity intensity distribution through the comparative calculation of the light intensity of two adjacent points. Then, the input non-uniform laser can be broken down into many equivalent uniform small lasers with different light intensity values. Based on this theory, the photovoltaic array model under laser was established, and it was simulated by MATLAB/Simulink. The simulation results reveal that the greater the difference between the light intensity values of these small spots, that is to say, the more non-uniform the laser, the lower the output power of the photovoltaic module illuminated by it. A multi-wavelength experimental platform was built, and comparative experiments of laser wireless power transmission were carried out using three kinds of lasers: 808, 532, and 1030 nm. The experimental result was in good agreement with the simulation result. The above results show that the deduced theory and the model based on it are correct.

Funder

Natural Science Foundation of Top Talent of SZTU

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3