Affiliation:
1. Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
Due to its high precision, phase-shifting interferometry (PSI) is a commonly used optical component detection method in interferometers. However, traditional PSI, which is susceptible to environmental factors, is costly, with piezoelectric ceramic transducer (PZT) being a major contributor to the high cost of interferometers. In contrast, two-frame random interferometry does not require precise multiple phase shifts, which only needs one random phase shift, reducing control costs and time requirements, as well as mitigating the impact of environmental factors (mechanical vibrations and air turbulence) when acquiring multiple interferograms. A novel method for wavefront reconstruction using two-frame random interferometry based on Swin-Unet is proposed. Besides, improvements have been made on the basis of the established algorithm to develop a new wavefront reconstruction method named Phase U-Net plus (PUN+). According to training the Swin-Unet and PUN+ with a large amount of simulated data generated by physical models, both of the methods accurately compute the wrapped phase from two frames of interferograms with an unknown phase step (except for multiples of π). The superior performance of both methods is effectively showcased by reconstructing phases from both simulated and real interferograms, in comprehensive comparisons with several classical algorithms. The proposed Swin-Unet outperforms PUN+ in reconstructing the wrapped phase and unwrapped phase.
Funder
Open Research Fund of State Key Laboratory of Transient Optics and Photonics
West Light Foundation of the Chinese Academy of Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献