Design and Optimization of a High-Efficiency 3D Multi-Tip Edge Coupler Based Lithium Niobate on Insulator Platform

Author:

Zhang Tian12,Li Jinye1,Li Mingxuan1,Liu Jianguo1

Affiliation:

1. State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Fiber-chip edge couplers can minimize mode mismatch in integrated lithium niobate (LiNbO3) photonics via facilitating broad optical bandwidth coupling between optical fibers and waveguide circuits. We designed a high-efficiency multi-tip edge coupler utilizing the lithium niobate on insulator (LNOI) platform for achieving superior fiber-to-chip coupling. The device comprises a bilayer LN inversely tapered waveguide, three 3D inversely tapered waveguides, and a silicon oxynitride (SiON) cladding waveguide (CLDWG). Finite difference method (FDM) and eigenmode expansion (EME) simulations were utilized to simulate and optimize the edge coupler structure specifically within the 1550 nm band. This coupler demonstrates a low fiber-chip coupling loss of 0.0682/0.0958 dB/facet for TE/TM mode at 1550 nm when interfaced with a commercially cleaved single-mode fiber (SMF) with a mode field diameter (MFD) of approximately 8.2 μm. Moreover, the 1 dB bandwidth of the coupler is 270 nm for the TE mode and 288 nm for the TM mode. Notably, the coupler exhibits a relatively large tolerance for optical misalignment owing to its large mode spot size of up to 4 μm. Given its ultra-low loss, high-efficiency ultra-broadband capabilities, and substantial tolerance features, this proposed device provides a paradigm for fiber-to-chip edge coupling within lithium niobate photonics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference33 articles.

1. Low-loss Inverted Taper Edge Coupler in Silicon Nitride;IET Optoelectron.,2019

2. High-Speed, Low-Loss Silicon Mach–Zehnder Modulators with Doping Optimization;Xiao;Opt. Express,2013

3. 240 Gbit/s Silicon Photonic Mach-Zehnder Modulator Enabled by Two 2.3-Vpp Drivers;Jacques;J. Light. Technol.,2020

4. Broadband Modulation of Light by Using an Electro-Optic Polymer;Lee;Science,2002

5. 80-GHz Bandwidth and 1.5-V V π InP-Based IQ Modulator;Ogiso;J. Light. Technol.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3