Full-Vectorial Light Propagation Simulation of Optimized Beams in Scattering Media

Author:

Ott Felix12,Fritzsche Niklas12,Kienle Alwin12

Affiliation:

1. Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm, D-89081 Ulm, Germany

2. Faculty of Natural Sciences, Ulm University, D-89081 Ulm, Germany

Abstract

Volumetric scattering prevents imaging modalities in biomedical optics from imaging deep inside tissue. The optimization of the incident wavefront has the potential to improve these imaging modalities. To investigate the optimization and light propagation of such beams inside scattering media rigorously, full-vectorial simulations based on solutions of Maxwell’s equations are necessary. In this publication, we present a versatile two-step beam synthesis method to efficiently simulate the scanning and phase optimization of a focused beam inside a static scattering medium. We present four different approaches to the phase optimization of the energy density and the absolute value of the Poynting vector. We find that these quantities have two regions with different, almost exponential decays over depth for a non-optimized beam. Optimization by conjugating the phase of the projected electric field in various directions at the focus shows an improvement below a certain penetration depth. Seeking global solutions to the optimization problems reveals an even better enhancement in the energy density and the absolute value of the Poynting vector in the focus. For Poynting vector optimization, the differences between the presented optimization approaches are more significant than for the energy density. With the presented method, it is possible to efficiently simulate different imaging methods improved by wavefront shaping to investigate their possible penetration depths.

Funder

Deutsche Forschungsgemeinschaft

Evangelisches Studienwerk Villigst

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3