Characteristic Study of Non-Line-of-Sight Scattering Ultraviolet Communication System at Small Elevation Angle

Author:

Du Axin,Wang Yuehui,Zhang Jing,Zhao Yingkai,Sun Ning,Liu Jianguo

Abstract

Ultraviolet (UV) communication is considered an effective complement to traditional wireless communication. However, the scattering models of existing non-line-of-sight (NLOS) UV, which are complex, are difficult to combine with the test. In this paper, the single scattering isosceles model with a small elevation angle is proposed first. Then, the relationships between the path loss of single scattering isosceles and elevation angle, emission beam angle, receiving field angle, and transmission distance are studied. Finally, we consider outdoor NLOS UV solar-blind communications test at ranges of up to 100 m and 400 m, with different transmit and receive elevation angles. The results show that the isosceles model is in good agreement with the experiments. In addition, the UV isosceles model exhibits good properties compared with the existing scattering model. The proposed UV isosceles model can be employed as a reference for practical applications in outdoor tests.

Funder

National Key R&D Program of China under Grant

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3