Silicon-Based Optoelectronics Enhanced by Hybrid Plasmon Polaritons: Bridging Dielectric Photonics and Nanoplasmonics

Author:

Sun Pengfei,Xu Pengfei,Zhu Kejian,Zhou ZhipingORCID

Abstract

Silicon-based optoelectronics large-scale integrated circuits have been of interest to the world in recent decades due to the need for higher complexity, larger link capacity, and lower cost. Surface plasmons are electromagnetic waves that propagate along the interface between a conductor and a dielectric, which can be confined several orders smaller than the wavelength in a vacuum and offers the potential for minimizing photonic circuits to the nanoscale. However, plasmonic waveguides are usually accompanied by substantial propagation loss because metals always exhibit significant resistive heating losses when interacting with light. Therefore, it is better to couple silicon-based optoelectronics and plasmonics and bridge the gap between micro-photonics and nanodevices, especially some nano-electronic devices. In this review, we discuss methods to enhance silicon-based optoelectronics by hybrid plasmon polaritons and summarize some recently reported designs. It is believed that by utilizing the strong light confinement of plasmonics, we can overcome the conventional diffraction limit of light and further improve the integration of optoelectronic circuits.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3