Evaluation of Renal Ischemia–Reperfusion Injury Using Optical Coherence Tomography Based on Fractal Dimension

Author:

Fang Yuhong1,Gong Wei2,Huang Zheng2,Zhang Yongtao1,Zhang Limin1,Xie Shusen2

Affiliation:

1. College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China

2. Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China

Abstract

Renal ischemia–reperfusion (IR) is inevitable in partial nephrectomy and kidney transplantation. Acute tubular necrosis (ATN) induced by renal IR causes the loss of functional units in the kidney, pathologically presenting as the nonhomogeneous distribution of normal uriniferous tubules and usually used to characterize kidney activity. Optical coherence tomography (OCT) has been proven to have the ability to image the kidney microstructure in vivo and in real time. However, a fast image analysis method is needed for clinical application purpose. In this work, a new method for assessing renal IR injury was developed using a fractal-dimension-based texture of the OCT kidney image. Thirty-five Wistar rats were divided into seven groups for renal ischemia–reperfusion: control and various ischemia-time groups. A time series of 3D OCT kidney images was obtained. We calculated the fractal dimension (FD) of OCT en face images and found that the value increased gradually and finally became stable after 90 min of reperfusion. The stable value in the long-ischemia-time group was smaller than that in the short-ischemia-time group. The FD value of the OCT kidney image was highly responsive to renal IR injury. The proposed method is promising for a fast diagnostic application.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Special Funds of the Central Government Guiding Local Science and Technology Development

Junior Teacher Research Project of Education Department of Fujian Province

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3