Design of Self-Matching Photonic Lantern for High-Order Transverse-Mode Laser Systems

Author:

Zhao Li12ORCID,Li Wei12,Chen Yunhao12ORCID,Zhao Enming3,Tang Jianing12

Affiliation:

1. School of Electrical and Information Engineering, Yunnan Minzu University, Kunming 650500, China

2. Yunnan Key Laboratory of Unmanned Autonomous Systems, Kunming 650500, China

3. School of Engineering, Dali University, Dali 671000, China

Abstract

High-order transverse-mode lasers have important potential application value in many fields. To address the current issue of the limited controllability of modes in high-order transverse-mode lasers, we have designed a self-matching photonic lantern (SMPL). The SMPL is formed by introducing a few-mode fiber into the input fiber array of the traditional photonic lantern. The parameters of the few-mode fiber match those of the tapered few-mode port of the SMPL; thus, it can transmit high-order modes in a closed loop. The designed SMPL exhibits dual-band multiplexing characteristics at 980/1550 nm, manifesting specifically as high-order mode selectivity excitation at 980 nm and mode preservation at 1550 nm. These characteristics have been validated through simulation and preliminary experiments. The SMPL is designed for constructing all few-mode fiber ring cavity lasers, enabling the pumping of the 980 nm fundamental mode to high-order modes and the transmission of multiple high-order transverse-mode lasers at 1550 nm in a closed loop. The proposed SMPL extends the configuration and functionality of the photonic lantern family, offering a flexible and effective approach to facilitate the generation of multiple high-order transverse-mode lasers. The SMPL combined with fiber laser systems could effectively broaden communication channels and enhance communication bandwidth. It also holds significant value in optical sensing, high-resolution imaging, laser micro-processing, and other fields.

Funder

National Natural Science Foundation of China

Applied Basic Research Foundation of Yunnan Province

Yunnan Provincial Department of Education

Yunnan Young and Middle-aged Academic and Technical Leaders Reserve Talent Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3