Design Optimization of Silicon-Based Optically Excited Terahertz Wave Modulation

Author:

Zhao Chenyu1,Wang Dayong12,Lin Shufeng12,Zhao Jie12ORCID,Wang Yunxin12,Rong Lu12

Affiliation:

1. School of Physics and Optoelectronic Engineering, Beijing University of Technology, 100 Ping Le Yuan, Beijing 100124, China

2. Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing University of Technology, Beijing 100124, China

Abstract

The modulation of a terahertz (THz) wave on amplitude, phase and polarization is important for the application of THz technology, especially in the field of imaging, and is one of the current research hotspots. Silicon-based, optically excited THz modulator is a wavefront modulation technique with a simple, compact and reconfigurable optical path. It can realize the dynamic modulation of THz wavefronts by only changing the projected two-dimensional pattern, but it still suffers from the problems of lower modulation efficiency and slower modulation rates. In this article, the Drude model in combination with the multiple thin layers structure model and Fresnel matrix method is used to compare the modulation efficiencies of three modulation modes and more factors. The method is more accurate than the popular proposed method, especially when the thickness of the excited photoconductive layers reaches a few hundred microns. In comparing the three modes, namely transmission, ordinary reflection and total internal reflection, it is found the total internal reflection modulation mode has the best modulation efficiency. Further, under this mode, the effects of three factors, including the lifetime of photo-excited carriers, the wavelength of pump light and the frequency of THz wave, on the performance of THz modulator are analyzed. The simulation results show that the realization of total internal reflection using silicon prisms is a simple and effective method to improve the modulation efficiency of a silicon-based optically excited THz modulator, which provides references for the design of a photo-induced THz modulator.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensitivity detection of imidacloprid pesticide using a metasurface sensor in THz spectrum regime;Engineering Science and Technology, an International Journal;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3