Optimization of Sampling Mode in Macro Fourier Ptychography Imaging Based on Energy Distribution

Author:

Jiang Runbo123,Shi Dongfeng13,Wang Yingjian13

Affiliation:

1. Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China

3. Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China

Abstract

Fourier ptychography imaging technology is a method developed in recent years to achieve high-resolution imaging. In the traditional macro Fourier ptychography technology, the scanning method when the camera captures low-resolution images mostly uses the rectangular linear grid format. These acquired images contain a small amount of complementary information, and a large number of low-resolution images are needed to achieve high-resolution imaging. Redundant measurements will extend the sampling and reconstruction time, and require more computing resources. In this paper, we propose to obtain the target image spectral energy distribution by pre-sampling. And according to the energy distribution, we use irregular and non-uniform sampling modes to restore the target image. With the same number of samples and same reconstruction time, higher resolution imaging can be achieved compared with traditional methods. Simulation and experimental studies are carried out in this paper, and the results confirm the effectiveness of the proposed methods. Compared with the traditional sampling mode, the two sampling modes proposed in this paper increase the resolution from 4.49 lp/mm to 5.66 lp/mm and 5.04 lp/mm respectively.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Foundation of Key Laboratory of Science and Technology Innovation of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference36 articles.

1. Wide-field, high-resolution Fourier ptychographic microscopy;Zheng;Nat. Photonics,2013

2. The synthesis of large radio telescopes;Ryle;Mon. Not. R Astron. Soc.,1960

3. Two-dimensional synthetic aperture imaging in the optical domain;Bashkansky;Opt. Lett.,2002

4. Optical sparse aperture imaging;Miller;Appl. Opt.,2007

5. Synthetic aperture radar;Brown;IEEE Trans. Aerosp. Electron. Syst.,1967

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3