Affiliation:
1. School of Physics and Electronic Information, Yantai University, Yantai 264005, China
2. FISEC Infomation Technology Company Limited, Weihai 264200, China
Abstract
It is well known that nano-lasers (NLs), as important optical components, have attracted widespread attention for their output characteristics. In this paper, the dynamic behavior and time-delay concealment properties of NLs mutually coupled in open-loop, semi-open-loop, and closed-loop structures have been numerically investigated. We employ bifurcation diagrams and 0–1 chaos tests in our simulations to quantitatively analyze the dynamic properties of the system and introduce the autocorrelation function to evaluate the ability of the system to conceal the time-delay signature (TDS). In the meantime, the effects of the NL parameters and the controllable variables of the system on the TDS are studied. The results indicate that, compared with an open-loop structure without feedback, the mutual coupling scheme with added feedback is beneficial for the system to output high-quality chaotic signals. Furthermore, selecting a moderate Purcell factor F and a smaller spontaneous emission coupling factor β can achieve TDS concealment over a wider parameter range of injection intensity and frequency detuning.
Funder
Natural Science Foundation of Shandong Provincial
The Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University
The Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献