Design of Dual-Focal-Plane AR-HUD Optical System Based on a Single Picture Generation Unit and Two Freeform Mirrors

Author:

Fan Chengxiang1,Kong Lingbao2ORCID,Yang Bo1,Wan Xinjun13

Affiliation:

1. Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Fudan University, Shanghai 200433, China

3. Suzhou Raphael Optech Co., Ltd., Suzhou 215400, China

Abstract

Augmented reality heads-up displays (AR-HUDs) have a much richer display than traditional heads-up displays. An ideal AR-HUD requires two or more focal planes to display basic and interactive driving information to the car driver separately. We present an off-axis reflective optical structure for dual-focal-plane displays using a single projection-type picture generation unit (PGU) and two freeform mirrors. The dual-focal-plane AR-HUD system designed in this paper can simultaneously generate high-quality far-field image (13° × 4°, 10 m) and near-field images (13° × 1.4°, 3.5 m) in a 130 mm × 60 mm eyebox. A fully automated analysis program is written to analyze the modulation transfer function (MTF) and distortion values of the optical system over the entire eyebox range. The analysis results show that the maximum distortion values of the far-field image and near-field image in the eyebox range are 3.15% and 3.58%, respectively. The MTF was greater than 0.3 at 7.2 lp/mm for both near-field images and far-field images. We also designed a projection lens for the projection-type PGU used in this system. The projection lens uses three plane mirrors to fold the image plane of the projection system into different positions to serve as the image source for the AR-HUD. This research provides a new solution for realizing the dual-focal-plane AR-HUD, which not only satisfies the need for simultaneous display of near-field basic information and far-field interactive information, but also has a larger display screen.

Funder

Science and Technology Innovation Action Plan Project of Shanghai

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3