Hybrid Ring- and Tree-Topology RoF Transmission System with Disconnection Protection

Author:

Li Chung-YiORCID,Chang Ching-HungORCID,Lin Zih-Guei

Abstract

This paper proposes a hybrid ring- and tree-topology radio over fiber (RoF) transmission system with self-disconnection protection that can support the high distribution density of base stations (BSs) in a metropolitan area and strengthen the network quality of service through self-disconnection protection. The number of supportable BS in the system can be increased significantly by integrating the time- and wavelength-division multiplexing techniques and properly utilizing a new-generation single-line bidirectional add/drop multiplexer (SBOADM) into the proposed system. Moreover, when the ring–fiber link of the system is interrupted for any reason, the system operator can recover the broken connections quickly only by transforming an optical switch state at the CO end to allow the downlink optical signals to transmit along the clockwise and counterclockwise directions of the ring–fiber link simultaneously. In this case, the downstream optical signals can be delivered to each set of BS-groups through the two-way transmission characteristics of the SBOADM automatically, and the uplink optical signals, originally, from each set of BS-groups can be transmitted back to the CO end along the opposite direction of the downlink signal-routing path. In this way, the interference caused by fiber breakage can be avoided immediately, and the entire transport system can be reconnected to ensure the quality of network services. Our experimental results prove that the overall transmission performances are similar to those under normal circumstances.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3