Image Spherizing-Based Three-Dimensional Displacement Measurement Technique for Microscope with Single Camera
-
Published:2022-03-03
Issue:3
Volume:9
Page:148
-
ISSN:2304-6732
-
Container-title:Photonics
-
language:en
-
Short-container-title:Photonics
Author:
Zhao Ran,Li Xuan,Sun Ping,Tang Yuxin,Jiao Peng,Huang Yonggang,Jia Jinsheng
Abstract
The detection of three-dimensional displacement, caused by micro-nano scale deformation, is of great significance for the industrial production of glass or quartz optical fiber products. Considering the detection cost and practicability, an image spherizing-based three-dimensional displacement measurement method for a monocular microscopic imaging system (a microscope with a normal industrial camera) is proposed. Differential theory tells us that an arbitrary large-scale deformation can be approximatively considered as the sum of slope-shaped deformations. In this paper, an ordinary slope model is presented by the idea of image spherizing and differential theory, which reveals the mathematical relation between in-plane displacement and out-of-plane displacement in the deformed images captured by an optical microscope. After obtaining the in-plane displacement field, the out-of-plane displacement field can be extracted from the in-plane displacement field by the ordinary slope model, which indicates that the out-of-plane displacement information carried by the in-plane displacement is fully utilized. Simulation and application experiments are performed to demonstrate the effectiveness and all the absolute errors of the measurement by optical microscope with a magnification of 50× are less than 0.2 μm. Unlike conventional methods, the new method does not need a phase unwrapping process during detection and has many attractive characteristics such as low-cost, simple arrangements and good applicability. Because the measurement precision of this technique can meet the detection requirement, it has been applied to the industrial detection of glass or quartz optical fiber products.
Funder
National Natural Science Foundation of China
Collaborative innovation projects of Beijing Chaoyang District
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献