Abstract
Achieving aberration correction can improve the imaging quality of an optical system, and reducing the error sensitivity of system can improve the realizability of the system. In order to obtain an off-axis three-mirror optical system with high image quality and low error sensitivity, a design method is proposed which obtains the initial structure of the three-mirror anastigmatic (TMA) optical system with low error sensitivity through a nondominated sorting genetic algorithm II (NSGA-II). Combining the comprehensive evaluation function of image quality and error sensitivity, this method iteratively selects multiple freeform surface types to determine the combination with the lowest error sensitivity and obtains the freeform TMA optical system with optimal overall performance. A freeform TMA optical system is designed by the method proposed in this paper, and the error sensitivity of the optical system is analyzed. The results show that the image quality of the freeform optical system is effectively improved and the error sensitivity is effectively reduced with the same error applied, which verifies the correctness and practicality of the method.
Funder
Youth Innovation Promotion Association
National Natural Science Foundation of China
Strategic Priority Research Program of Chinese Academy of Sciences
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献