Effects of Photonic Band Structure and Unit Super-Cell Size in Graded Photonic Super-Crystal on Broadband Light Absorption in Silicon

Author:

Hassan Safaa,Alnasser Khadijah,Lowell David,Lin YuankunORCID

Abstract

The newly discovered graded photonic super-crystal (GPSC) with a large size of unit cell can have novel optical properties that have not been explored. The unit super-cell in the GPSC can be designed to be large or small and thus the GPSC can have no photonic band gap or several gaps. The photonic band structures in Si GPSC can help predict the light absorption in Si. Photonic resonance modes help enhance the absorption of light in silicon; however, photonic band gaps decrease the absorption for light with a large incident angle. The Si device patterned in GPSC with a unit super-cell of 6a × 6a (a is a lattice constant in traditional photonic crystal) has a broadband high absorption with strong incident-angular dependence. The device with the unit super-cell of 12a × 12a has relatively low light absorption with weak incident-angle dependence. The Si GPSC with a unit super-cell of 8a × 8a combines both advantages of broadband high absorption and weak dependence of absorption on the incident angle.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3