Atmospheric Turbulence Effects on the Performance of Orbital Angular Momentum Multiplexed Free-Space Optical Links Using Coherent Beam Combining

Author:

Ju Pei12ORCID,Fan Wenhui123ORCID,Gao Wei12,Li Zhe12ORCID,Gao Qi12,Jiang Xiaoqiang12ORCID,Zhang Tongyi123ORCID

Affiliation:

1. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

Abstract

Atmospheric effects including absorption and scattering, and turbulence could introduce signal power loss and severe mode crosstalk for the orbital angular momentum (OAM)-based free-space optical communication (FSOC). Therefore, it is of great significance to simultaneously increase signal power and mitigate mode crosstalk. In this paper, for the OAM beam from a coherent laser array with a discrete vortex (CLA-DV) based on coherent beam combining, we investigate its propagation characteristics by employing theoretical derivation and the random phase screens simulation in atmospheric propagation, respectively. The probability density and OAM spectrum are given and compared for CLA-DV and Gaussian vortex beam. The results demonstrate that the Gaussian vortex beam exhibits smaller mode crosstalk under weak atmospheric turbulence conditions, while CLA-DV shows a good performance on crosstalk mitigation for strong atmospheric turbulence conditions in long-distance links. Furthermore, with a specially designed radial phase-locked Gaussian laser array composed of two orthogonal polarized coherent laser arrays carrying different OAM states, a scheme of optical communication system possessing simultaneously polarization-division multiplexing and OAM multiplexing is proposed. The normalized energy weight matrices of all 16 non-zeroth-order OAM modes are numerically calculated. To verify the feasibility of the proposed scheme, the performance of an eight-bit grayscale Lena image facing various atmosphere turbulences is evaluated. The quality of transmitted images becomes worse with the turbulence strength and transmission distance increase, which is confirmed by the trend of average optical signal error rates. This work will provide theoretical insight for improving the performance of OAM-based FSOC under scattering conditions.

Funder

Youth Innovation Promotion Association XIOPM-CAS

National Natural Science Foundation of China

Key R & D Program of Shaanxi Province

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3