Improved Search Algorithm of Digital Speckle Pattern Based on PSO and IC-GN

Author:

Chen Qiang,Tie ZhixinORCID,Hong Liang,Qu Youtian,Wang Dengwen

Abstract

Digital speckle correlation method has not only been widely used in a variety of photometric mechanical scenarios, but also integrated with multiple disciplines. In the future, it will even be inextricably linked to the Internet of Things, autonomous driving, deep learning and other fields. For a given hardware condition, it is of great significance to improve the efficiency of integer-pixel search and increase the accuracy and efficiency of the sub-pixel algorithm. In this paper, we propose an improved digital speckle correlation method, which consists of an integer-pixel search algorithm and a sub-pixel search algorithm. With respect to the integer-pixel search, aiming to address the two problems of uniqueness of maximum value and parameter setting of PSO-W algorithm, the algorithm PSO-1 is proposed, and the results of comparison experiments show that it has higher search efficiency. In terms of sub-pixels, based on IC-GN algorithm with the highest accuracy at present, the IV-ICGN algorithm is proposed, and the simulation experiment results show that the proposed algorithm has higher accuracy and higher efficiency than the comparison algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3