Modeling Effect of Bubbles on Time-Dependent Radiation Transfer of Microalgae in a Photobioreactor for Carbon Dioxide Fixation

Author:

Fei Tianhao,Lin Li,Li Xingcan,Yang Jia-YueORCID,Zhao Junming,Liu Linhua

Abstract

Microalgae are considered one of the most efficient and environmentally friendly ways for carbon dioxide fixation. The bubbles play an important role in analyzing the radiation transfer in photobioreactors during microalgae growth. Herein, Chlorella sp. and Scenedesmus obliquus were cultured in the airlift flat plate photobioreactor and evaluated for the temporal evolution of radiation characteristics. A one-dimensional model of bubbles on time-dependent radiation transfer in a photobioreactor was proposed, and it was well verified with the experimental result. The results indicated that with the increase of bubble volume fraction or the decrease of bubble radius, the local irradiance increased at the illuminated surface of the microalgal culture and was attenuated more rapidly along with the radiation transfer. The average specific growth rate of microalgae decreases as bubble volume fraction increases or bubble radius decreases. The volume fraction of 0.003 and a radius of 3.5 mm are the optimal operating conditions in this study for microalgae growth and carbon dioxide fixation. The presented analysis would facilitate the design and optimization of the optical and aeration configurations of photobioreactors for carbon dioxide fixation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3