Abstract
We have studied diverse vector and hybrid light fields, including those with multiple polarization singularities, and have derived relationships for polarization singularity indices based on the familiar Berry formula, which is normally utilized to find the topological charge of a scalar vortex light field. The fields with pure polar-angle-dependent polarization in the beam cross-section are shown to feature either polarization singularity lines outgoing from the center or a single polarization singularity point at the beam center. The fields with pure radial-variable-dependent polarization are shown to have no polarization singularities and zero polarization index. The vector fields with both polar-angle- and radial-variable-dependent polarization are shown to have multiple polarization singularity points that are scattered across the cross-section. A vector field with higher-order radial polarization and a real parameter was also studied and was shown to feature either several polarization singularity lines outgoing from the center or a central singular point, depending on the parameter value. Notably, at different parameter values, the polarization singularity index of such a field can take half-integer, integer, or zero values.
Funder
Russian Science Foundation
Ministry of science and higher education of Russian Federation
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献