Ballistic Imaging through Strongly Scattering Media by Using a Combination of Supercontinuum Illumination and Fourier Spatial Filtering

Author:

Tong Junyi,Zheng Yipeng,Tan Wenjiang,Li Cunxia,Si Jinhai

Abstract

Imaging through turbid media is important but has created challenging issues for a long time. Previous research studies have shown that the object hidden in a turbid medium might be seen just by effectively suppressing the speckles by using low-coherent light sources, such as random laser and supercontinuum. However, the image contrast was seriously degraded due to the background noise of scattered photons. In this work, we demonstrate ballistic imaging for an object hidden behind strongly scattering media, in which the speckles are suppressed by the supercontinuum (SC) illumination and lots of scattered photons are simultaneously filtered by the Fourier spatial gate. Compared with speckle-free imaging from using SC illumination and ballistic imaging by Fourier spatial filtering, this method combines their advantages and shows a degree of synergism. When the optical depth of the scattering medium reaches 14, the image using this combined method is able to increase the image identifiability and the relative image contrast by about two times and four times compared to the method using only SC illumination, respectively. Our work offers a way for direct imaging through strongly turbid media without a complex image process.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Provincial Department of Education

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3