Finite Temperature Ultraviolet-Visible Dielectric Functions of Tantalum Pentoxide: A Combined Spectroscopic Ellipsometry and First-Principles Study

Author:

Zhang Wenjie,Zeng Zhaohui,Cheng Tao,Fei Tianhao,Fu Zhiwei,Liu Xiaoyan,Zhang Jingyi,Yang Jia-YueORCID

Abstract

Tantalum pentoxide (Ta2O5) has demonstrated promising applications in gate dielectrics and microwave communication devices with its intrinsically high dielectric constant and low dielectric loss. Although there are numerous studies on the dielectric properties of Ta2O5, few studies have focused on the influence of external environmental changes (i.e., temperature and pressure) on the dielectric properties and the underlying physics is not fully understood. Herein, we synthesize Ta2O5 thin films using the magnetron sputtering method, measure the ultraviolet-visible dielectric function at temperatures varying from 300 to 873 K by spectroscopic ellipsometry (SE), and investigate the temperature influence on the dielectric function from first principles. SE experiments observe that temperature has a nontrivial influence on the ultraviolet-visible dielectric function, accompanying the consistently decreased amplitude and increased broadening width for the dominant absorption peak. First-principles calculations confirm that the dominant absorption peak originates from the aggregated energy states near the valence band maximum (VBM) and conduction band minimum (CBM), and the theoretically predicted dielectric functions demonstrate good agreement with the SE experiments. Moreover, by performing first-principles molecular dynamics simulations, the finite-temperature dielectric function is predicted and its change trend with increasing temperature agrees overall with the SE measurements. This work explores the physical origins of temperature influence on the ultraviolet-visible dielectric function of Ta2O5, aimed at promoting its applications in the field of micro-/nanoelectronics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3