Terahertz Generation through Coherent Excitation of Slow Surface Waves in an Array of Carbon Nanotubes

Author:

Afanas’ev Sergey A.1,Fotiadi Andrei A.23ORCID,Kadochkin Aleksei S.14,Kitsyuk Evgeny P.4,Moiseev Sergey G.15ORCID,Sannikov Dmitry G.1,Svetukhin Vyacheslav V.4,Shaman Yury P.14ORCID,Zolotovskii Igor O.1ORCID

Affiliation:

1. Technological Research Institute, Ulyanovsk State University, Ulyanovsk 432970, Russia

2. Optoelectronics and Measurement Techniques Unit, University of Oulu, 90570 Oulu, Finland

3. Electromagnetism and Telecommunication Department, University of Mons, B-7000 Mons, Belgium

4. Scientific-Manufacturing Complex “Technological Centre”, Moscow 124498, Russia

5. Kotelnikov IRE RAS, Ulyanovsk Branch, Ulyanovsk 432071, Russia

Abstract

In this paper, we present a scheme for generating terahertz (THz) radiation using an array of parallel double-walled carbon nanotubes (DWCNTs) subjected to a direct current (DC). The longitudinal surface plasmon polaritons (SPPs) in the DWCNTs are coherently excited by two near-infrared laser beams with slightly different frequencies. Through numerical methods, we investigate the spectral characteristics of the SPPs in the presence of a DC current in the nanotubes. We identify high-quality plasmonic modes with a slowdown factor exceeding 300 in the terahertz frequency region. The amplification of these slow SPP modes is facilitated by the DC current in the DWCNTs, fulfilling a synchronism condition. This condition ensures that the phase velocity of the SPPs is closely matched to the drift velocity of the charge carriers, allowing for an efficient energy exchange between the current and the surface electromagnetic wave. The high-frequency currents on the nanotube walls in the DWCNT array enable the emission of THz radiation into the far field, owing to an antenna effect.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Science Foundation

European Union

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3