Research on a Near-Field Millimeter Wave Imaging Algorithm and System Based on Multiple-Input Multiple-Output Sparse Sampling

Author:

Zhang He1,Zong Hua1,Qiu Jinghui1

Affiliation:

1. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

In order to reduce the hardware cost and data acquisition time in near-field scenarios, such as airport security imaging systems, this paper discusses the layout of a multiple-input multiple-output (MIMO) radar array. In view of the existing multi-input multiple-output imaging algorithm, the reconstructed image artifacts and aliasing problems caused by sparse sampling are discussed. In this paper, a multi-station radar array and a corresponding sparse MIMO imaging algorithm based on combined sparse sub-channels are proposed. By studying the wave–number spectrum of backscattered MIMO synthetic aperture radar (SAR) data, the nonlinear relationship between the wave number spectrum and reconstructed image is established. By selecting a complex gain vector, multiple channels are coherently combined effectively, thus eliminating aliasing and artifacts in the reconstructed image. At the same time, the algorithm can be used for the MIMO–SAR configuration of arbitrarily distributed transmitting and receiving arrays. A new multi-station millimeter wave imaging system is designed by using a frequency-modulated continuous wave (FMCW) chip and sliding rail platform as a planar SAR. The combination of the hardware system provides reconfiguration, convenience and economy for the combination of millimeter wave imaging systems in multiple scenes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3