Characterizing Quantum Effects in Optically Induced Nanowire Self-Oscillations: Coherent Properties

Author:

Choi Jeong Ryeol

Abstract

Mechanical properties of metallic-nanowire self-oscillations are investigated through a coherent-state analysis. We focus on elucidating the time behavior of quantum energy in such oscillations, in addition to the analysis of fluctuations, evolution of eigenstates, and oscillatory trajectories. The quantum energy varies somewhat randomly at first, but, at a later time, it undergoes a stable periodical oscillation; the mean energy in the stabilized motion is large when the frequency of the driving force is resonated with that of the intrinsic oscillation of the nanowire. We confirmed that when the oscillatory amplitude is sufficiently low, the quantum energy is quite different from the classical one due to zero-point energy which appears in the quantum regime. Because the power in such an oscillation is typically ultra low, quantum effects in the nanowire oscillations are non-negligible. Detailed analysis for the evolution of the probability densities and their relation with the oscillation trajectories of the nanowire are also carried out. Characterizing quantum effects in the actual oscillatory motions and clarifying their difference from the classical ones are important in understanding nanowire self-oscillations.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3