A Dynamic Restructuring Algorithm Based on Flexible PON Slices

Author:

Tian Qinghua12,Li Shixuan12,Wang Fu12,Tang Xiongyan3,Sun Dandan12,Yao Haipeng4ORCID,Tian Feng12,Zhang Qi12ORCID,Xin Xiangjun5

Affiliation:

1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China

2. Beijing Key Laboratory of Space-Ground Interconnection and Convergence, School of Electronic Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China

3. China United Network Communication Co., Ltd., China Unicom, Beijing 100033, China

4. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China

5. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Abstract

In recent years, with the introduction of the concept of the Internet of Things, a large number of terminals connected to the network, the pressure of network bandwidth is increasing. The bandwidth resources wasted by the traditional fixed access network architecture have attracted more and more attention of researchers. In order to meet the different needs of different users for service quality and improve the flexibility of network, network slicing technology arises at the right moment. Based on the slicing idea of the flexible time- and wavelength-division multiplexing passive optical network (TWDM-PON), a dynamic PON slice restructuring algorithm (DRA) is proposed in this paper. The proposed algorithm avoids the influence of previous slicing on subsequent slicing in the step-by-step slicing process, slices at the global level, and is less affected by the randomness of initialization. The simulation results show that the performance of DRA is about 10~30% higher than that of the dynamic optical network units (ONUs) grouping algorithm (DGA) and the dynamic ONU slicing algorithm (DONUSA) when there are 8 OLTs, and is about 30% higher than that of DGA and 10% higher than that of DONUSA when there are 16 OLTs. Therefore, the proposed DRA has more positive significance to relieve the traffic pressure in the increasingly tight bandwidth resources.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3