Tailoring Wavelength-Selective Diffraction Efficiency Using Triple-Layer Double-Relief Blazed Gratings Incorporating Materials with Intersecting Dispersion Curves

Author:

Schmidt Lia12ORCID,Hillmer Hartmut2ORCID,Brunner Robert13ORCID

Affiliation:

1. Department SciTec, University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany

2. Institute of Nanostructure Technologies and Analytics, Technological Electronics Department, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany

3. Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Straße 7, 07745 Jena, Germany

Abstract

Diffractive optical elements (DOEs) fundamentally provide the possibility to simultaneously utilize multiple orders for different imaging functions within a system. However, to take advantage of this property, it is necessary to tailor the assignment of specific wavelengths or wavelength ranges with high diffraction efficiency to specific diffraction orders. To achieve this wavelength-selective assignment to different orders, simple diffractive profile shapes are not suitable; instead, multilayer DOEs are required. In this study, we conducted theoretical, scalar investigations on the diffraction efficiency of triple-layer double-relief DOEs for the purpose of tailored wavelength selectivity. Specific materials such as nanocomposites, layer materials, and high-refractive-index liquids with strong dispersion were included, in addition to inorganic glasses, to enable wide design freedom for wavelength selectivity across multiple orders. To simultaneously account for both positive and negative orders, specific material combinations featuring intersecting or touching dispersion curves were utilized. For various material combinations, we calculated significantly different efficiency profiles for multiple orders by varying the relief depths. Further, we discuss the possibility of fine-tuning the efficiency profiles by using high-index liquids as an intermediate layer between two solid profiles, whose dispersion properties can be varied continuously or at least in small steps.

Funder

Deutsche Forschungsgemeinschaft

University of Applied Sciences Jena

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3