Multi-User Nonlinear Optical Cryptosystem Based on Polar Decomposition and Fractional Vortex Speckle Patterns

Author:

Mandapati Vinny Cris1,Vardhan Harsh1,Prabhakar Shashi2ORCID,Sakshi 3,Kumar Ravi1,Reddy Salla Gangi1,Singh Ravindra P.2,Singh Kehar4

Affiliation:

1. Department of Physics, SRM University—AP, Andhra Pradesh 522502, India

2. Quantum Science and Technology Laboratory, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India

3. Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 8410501, Israel

4. Optics and Photonics Center, Indian Institute of Technology Delhi, New Delhi 110016, India

Abstract

In this paper, we propose a new multiuser nonlinear optical cryptosystem using fractional-order vortex speckle (FOVS) patterns as security keys. In conventional optical cryptosystems, mostly random phase masks are used as the security keys which are prone to various attacks such as brute force attack. In the current study, the FOVSs are generated optically by the scattering of the fractional-order vortex beam, known for azimuthal phase and helical wavefronts, through a ground glass diffuser. FOVSs have a remarkable property that makes them almost impossible to replicate. In the input plane, the amplitude image is first phase encoded and then modulated with the FOVS phase mask to obtain the complex image. This complex image is further processed to obtain the encrypted image using the proposed method. Two private security keys are obtained through polar decomposition which enables the multi-user capability in the cryptosystem. The robustness of the proposed method is tested against existing attacks such as the contamination attack and known-plaintext attack. Numerical simulations confirm the validity and feasibility of the proposed method.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3