Carbon Monoxide Detection Based on the Carbon Nanotube-Coated Fiber Gas Sensor

Author:

Zhang Yin,Yu Wenwen,Wang Dibo,Zhuo Ran,Fu Mingli,Zhang Xiaoxing

Abstract

Accurate detection of the internal decomposition components of SF6 electrical equipment plays an important role in the evaluation of equipment status. However, gas samples are usually taken out for detection at present, which makes it difficult to understand the real situation inside the equipment. In this paper, a carbon nanotube-coated fiber gas sensor is proposed, which has the potential to be applied as a built-in gas sensor. The fiber loop ring-down (FLRD) gas detection system based on the carbon nanotube-coated fiber gas sensor was built, and the detectable decomposition components among the four typical SF6 decomposition components of SO2, SO2F2 and SOF2 and CO were analyzed. The results showed that the fiber gas sensor was most sensitive to CO. Based on density functional theory, it was found that single-walled carbon nanotubes had the best adsorption effect on CO molecules under the same conditions, with the adsorption energy reaching −0.150 Ha. The detection performance of the system for CO was studied, and the results showed that there was a good linear relationship between CO concentration and ring-down time: R2 was 0.984, the maximum inversion error of 0~200 ppm CO was 1.916 ppm, and the relative error was 4.10%. The sensitivity of the system was 0.183 ns/ppm, and the detection limit of the system was 19.951 ppm. The system had good stability, with the standard deviation of single-point repeatability being 0.00356, and the standard deviation of the long period of the experiment being 0.00606. The research results provide a new idea for the detection of SF6 decomposition components, and lay the foundation for the component detection method of built-in fiber sensor of SF6 electrical equipment.

Funder

Natural Science Foundation of Hubei Province

United Laboratory of Advanced Electrical Materials and Equipment Support Technology, CSG

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3