Optical Properties of Black Carbon Aerosols with Different Coating Models

Author:

Tang YanxiaORCID,Huang Yong,Zhu Keyong

Abstract

Research on the optical properties of black carbon (BC) aerosols is highly important for investigating global climate change. A general inhomogeneous particle superposition model is developed. Inhomogeneous particles with arbitrary shapes can be constructed by this model. BC aerosols with core-shell, spherical, ellipsoid, and irregular coating models are established to explore the impact of coating shape on their optical properties. The optical properties are studied employing the discrete dipole approximation method (DDA). The influences of the morphology of BC aerosols, the coating volume fractions, and the shape of coatings on the optical properties are analyzed. The irregular coating shape causes a higher forward scattering intensity and a lower extinction cross-section. The forward scattering intensity of the core-shell model is lower than other models. The effect of the coating shape on forward scattering intensity becomes smaller as coating volume and fractal dimension increase. Consequently, assuming irregular coating as spherical coating models considered in most studies leads to inaccuracy in the optical properties of BC aerosols. It is necessary to comprehensively consider the effects of aerosol morphology and coating volume for investigating the optical properties of black carbon aerosols.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Central Universities

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3