Broadband Microwave Photonic Channelizer with 18 Channels Based on Acousto-Optic Frequency Shifter

Author:

Chen Bo,Dong Qunfeng,Cao Biao,Zhai Weile,Gao YongshengORCID

Abstract

A microwave photonic channelizer can achieve instantaneous reception of ultra-wideband signals and effectively avoid electronic bottleneck; therefore, it can be perfectly applied to a wideband radar system and electronic warfare. In channelization schemes based on an optical frequency comb (OFC), the number of comb lines usually depends on that of the sub-channels. In order to improve the utilization rate of the comb lines of OFC, we propose a scheme to shift the frequency of OFC by using an acousto-optic frequency shifter (AOFS), which can obtain three times the number of sub-channels of the comb lines of an OFC. In order to simplify the experiment, only a three-line OFC is used in the experiment. A three-line local oscillator (LO) OFC is frequency-shifted up and down by two AOFSs, and nine optical LO signals with different frequencies are obtained, thereby realizing the simultaneous reception of eighteen sub-channels. The proposed scheme enjoys a large number of sub-channels and minimal channel crosstalk. Experimental results demonstrate that a 9-GHz bandwidth RF signal covering 10–19 GHz is divided into 18 sub-channels with a sub-bandwidth of 500 MHz. The image rejection ratio of the sub-channels is about 23 dB, and the spurious-free dynamic range (SFDR) of the receiver can reach 98 dB·Hz2/3.

Funder

Key Research and Development Program of Shaanxi

National Nature Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Xianyang Normal University Research Program

Special Scientific Research Program of Shaanxi Provincial Department of Education

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3