Research on A High-Sensitivity Temperature Sensor with Multi-Indicator Based on Nano-Cylinder-Loaded Ring Resonator

Author:

Zhou Peng,Liang KunORCID,Wang Yilin,Sun Qing’anORCID,Guo Jiaqi,Jin Lei,Yu Li

Abstract

Increasing sensor sensitivity and maintaining a large FOM (figure of merit) are challenging to achieve at the same time. Adding grooves and asymmetrical structures to the annular cavity increases sensitivity; however, it usually makes the FOM of the structure decrease. Herein, we propose a MIM (metal-insulator-metal) sensor of a novel structure with nano-cylinders loaded in a ring resonator (NCRR), whose sensitivity can reach as high as 3636.4 nm/RIU (refractive index unit). The FOM is maintained around 2000 in the mid-infrared (MIR) region. We find that grating effects only occur in the ring cavity when the cylinder’s distance is below three times its radius, and it can improve the sensitivity of the proposed structure up to 42.3% without decreasing its FOM. In addition, results suggest that our sensor has excellent resistance to eccentricity, which brings in manufacturing. Furthermore, we investigate the capability of the proposed device as a temperature sensor with ethanol, which exhibits a maximum temperature sensitivity of 1.48 nm/°C. We believe that our research has essential application prospects in miniature integrated sensors, optical switches, splitters, filters, and broadband passers.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Central Universities

State Key Laboratory of Information Photonics and Optical Communications

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3