Multicore Photonic Complex-Valued Neural Network with Transformation Layer

Author:

Wang RuitingORCID,Wang Pengfei,Lyu Chen,Luo Guangzhen,Yu Hongyan,Zhou Xuliang,Zhang Yejin,Pan JiaoqingORCID

Abstract

Photonic neural network chips have been widely studied because of their low power consumption, high speed and large bandwidth. Using amplitude and phase to encode, photonic chips can accelerate complex-valued neural network computations. In this article, a photonic complex-valued neural network (PCNN) chip is designed. The scale of the single-core PCNN chip is limited because of optical losses, and the multicore architecture of the chip is used to improve computing capability. Further, for improving the performance of the PCNN, we propose the transformation layer, which can be implemented by the designed photonic chip to transform real-valued encoding to complex-valued encoding, which has richer information. Compared with real-valued input, the transformation layer can effectively improve the classification accuracy from 93.14% to 97.51% of a 64-dimensional input on the MNIST test set. Finally, we analyze the multicore computation of the PCNN. Compared with the single-core architecture, the multicore architecture can improve the classification accuracy by implementing larger neural networks and has better phase noise robustness. The proposed architecture and algorithms are beneficial to promote the accelerated computing of photonic chips for complex-valued neural networks and are promising for use in many applications, such as image recognition and signal processing.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Frontier Science Research Project of CAS

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3