Abstract
A shock wave is a mechanical high-pressure pulse that travels inside a medium with a full width at half-maximum of a few nanoseconds that may be induced with a high-power laser pulse. A piezo-resistive measurement method to determine the shock wave pressure has been widely employed even though there is inner inaccuracy in the calibration process. We are interested in developing a precise theoretical model of laser material processing for applications in material sciences that includes the frequency dependence of the electronic post processing. We show an approach to determine the correction factor to frequency response at a high frequency of a piezo-resistive experimental setup and the results of the pressure measurements obtained in this experimental setup. The theoretical and experimental work demonstrates the feasibility of piezo-resistive methods to measure a laser-induced shock wave pressure in the nanosecond range. The correction factor of the frequency dependence calibration allows the technique to be applied in different shock wave experiments.
Funder
Air Force Office of Scientific Research
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献