Frequency Dependence of a Piezo-Resistive Method for Pressure Measurements of Laser-Induced Shock Waves in Solids

Author:

Gonzalez-Romero RicardoORCID,Strojnik MarijaORCID,Garcia-Torales GuillermoORCID,Gomez-Rosas Gilberto

Abstract

A shock wave is a mechanical high-pressure pulse that travels inside a medium with a full width at half-maximum of a few nanoseconds that may be induced with a high-power laser pulse. A piezo-resistive measurement method to determine the shock wave pressure has been widely employed even though there is inner inaccuracy in the calibration process. We are interested in developing a precise theoretical model of laser material processing for applications in material sciences that includes the frequency dependence of the electronic post processing. We show an approach to determine the correction factor to frequency response at a high frequency of a piezo-resistive experimental setup and the results of the pressure measurements obtained in this experimental setup. The theoretical and experimental work demonstrates the feasibility of piezo-resistive methods to measure a laser-induced shock wave pressure in the nanosecond range. The correction factor of the frequency dependence calibration allows the technique to be applied in different shock wave experiments.

Funder

Air Force Office of Scientific Research

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermoelastic impact modeling for projectile–target–muzzle components during penetration start of motion;The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology;2023-11-27

2. Finite element analysis of a thickness meter based on laser shock waves;Infrared Remote Sensing and Instrumentation XXXI;2023-10-20

3. A review on peening processes and its effect on surfaces;The International Journal of Advanced Manufacturing Technology;2022-03-18

4. Numerical Analysis of Micro-Lens Array to the Mid-IR Range;Engineering Proceedings;2021-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3