Reducing the Crosstalk in Collinear Holographic Data Storage Systems Based on Random Position Orthogonal Phase-Coding Reference

Author:

Song Haiyang1ORCID,Li Jianan1,Lin Dakui1,Liu Hongjie1,Lin Yongkun1,Hao Jianying1,Wang Kun1,Lin Xiao1,Tan Xiaodi1ORCID

Affiliation:

1. Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Information Photonics Research Center, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China

Abstract

Previous studies have shown that orthogonal phase-coding multiplexing performs well with low crosstalk in conventional off-axis systems. However, noticeable crosstalk occurs when applying the orthogonal phase-coding multiplexing to collinear holographic data storage systems. This paper demonstrates the crosstalk generation mechanism, features, and elimination methods. The crosstalk is caused by an inconsistency in the intensity reconstruction from the orthogonal phase-coded reference wave. The intensity fluctuation range was approximately 40%. Moreover, the more concentrated the distribution of pixels with the same phase key, the more pronounced the crosstalk. We propose an effective random orthogonal phase-coding reference wave method to reduce the crosstalk. The orthogonal phase-coded reference wave is randomly distributed over the entire reference wave. These disordered orthogonal phase-coded reference waves achieve consistent reconstruction intensities exhibiting the desired low-crosstalk storage effect. The average correlation coefficient between pages decreased by 73%, and the similarity decreased by 85%. This orthogonal phase-coding multiplexing method can be applied to encrypted holographic data storage. The low-crosstalk nature of this technique will make the encryption system more secure.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Major Science and Technology Project of Fujian Province

National Nature Science Foundation of China

Natural Science Foundation of Fujian Province, China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3