Surface-Emitting Lasers with Surface Metastructures

Author:

Liu Anjin12,Zhang Jing12,Hao Chenxi12,Wang Minglu12,Zheng Wanhua123

Affiliation:

1. State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

Abstract

Vertical-cavity surface-emitting lasers (VCSELs) have been widely used in consumer electronics, light detection and ranging, optical interconnects, atomic sensors, and so on. In this paper, a VCSEL with the surface metastructure like one-dimensional high-contrast grating (HCG), based on the HCG-DBR vertical cavity, was first designed and fabricated. The polarization characteristic of the HCG-VCSEL were experimentally studied. The p-doped top 4-pair DBR for the current spreading and the direction shift between the HCG and the elliptical oxide aperture may result in a low orthogonal polarization suppression ratio in the HCG-VCSEL. Then, the Bloch surface wave surface-emitting laser (BSW-SEL), based on the HCG-DBR metastructure, is proposed for single-mode, high-efficiency, and high-power output with a low divergence angle. The mode field and the far field profile of the BSW-SEL are calculated for verification. The surface-emitting lasers with surface metastructures are useful for the sensing applications and optical interconnects.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tunable MEMS-VCSEL with High-Contrast Grating;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

2. Nanophotonics Pioneer: Prof. Dr. Dieter Bimberg “Green Photonic Network: From VCSELs to Nanophotonics”;Photonics;2023-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3