Abstract
The combination of the integrated waveguide and phase-change materials (PCMs) provides a promising platform for reconfigurable and multifunctional photoelectric devices. Through plasmonic enhancement and the low loss propagation of the waveguide, the footprint and power consumption of the photoelectric device can be effectively improved. In this work, a metal double-ring structure embedded with phase change materials was proposed to utilize the plasmonic effect for enhancement of the light-matter interaction. In particular, the overall temperature difference in the PCM cell can be confined within 2 °C during the crystallization process, thus avoiding the interior heterogeneous crystallization. The insertion loss of the cell in amorphous and crystalline states at a wavelength of 1550 nm are 2.3 dB and 1.0 dB, respectively. A signal contrast ratio of 15.8% is achieved under the ultra-small footprint (50 × 90 nm2) at a wavelength of 1550 nm.
Funder
National Natural Science Foundation of China
Ningbo Municipal Natural Science Foundation of China
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献