Affiliation:
1. Shandong Provincial Key Laboratory of Optics and Photonic Device & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
2. Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Abstract
Random lasers have attracted much attention in recent years owing to their advantages of a simple fabrication process, low processing cost, and material flexibility for any lasing wavelengths. They provide a roadmap for the design of ultra-bright lighting, displays, etc. However, the threshold reduction in random nanolasers remains a challenge in practical applications. In this work, lower-threshold random laser action from monolayer molybdenum disulfide film-encapsulated Au nanoparticles (MoS2/Au NPs) is demonstrated. The observed laser action of the MoS2/Au NPs shows a lower threshold of about 0.564 µJ/mm2, which is about 46.2% lower than the threshold of random lasers based on Au NPs. We proposed that the charge transfer between MoS2 and the gain material is the main reason for the reduction in the random laser threshold. The finite-difference time-domain (FDTD) method was used to calculate the lasing action of these two nanostructures. When charge transfer is taken into account, the theoretically calculated threshold of the MoS2/Au NPs is reduced by 46.8% compared to Au NP samples, which is consistent with the experimental results. This study provides a new mechanism to achieve low-threshold and high-quality random lasers, which has the potential to facilitate the application of random lasers and the development of high-performance optoelectronic devices.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province