Abstract
We explore the possibility of extending the depth of focus of an imaging lens with an asymmetric quartic phase-mask, while keeping the aberration within a relatively low level. This can be intended, for instance, for ophthalmic applications, where no further digital processing can take place, relying instead on the patient’s neural adaptation to their own aberrations. We propose a computational optimization method to derive the design-strength factor of the asymmetric profile. The numerical and experimental results are shown. The optical experiment was conducted by means of a modulo-2π phase-only spatial light modulator. The proposed combination of the asymmetric mask and the lens can be implemented in a single refractive element. An exemplary case of an extended-depth-of focus intraocular lens based on the proposed element is described and demonstrated with a numerical experiment.
Funder
Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献