Numerical Study of Resonant Optical Parametric Amplification via Gain Factor Optimization in Dispersive Microresonators

Author:

Aşırım Özüm Emre,Kuzuoğlu Mustafa

Abstract

The achievement of wideband high-gain optical parametric amplification has not been shown in micrometer-scale cavities. In this paper we have computationally investigated the optical parametric amplification process in a few micrometer-long dispersive microresonator. By performing a gain medium resonance frequency dependent analysis of optical parametric amplification, we have found that it is possible to achieve a wideband high-gain optical amplification in a dispersive microresonator. In order to account for the effects of dispersion (modeled by the polarization damping coefficient) and the resonance frequency of the gain medium on optical parametric amplification, we have solved the wave equation in parallel with the nonlinear equation of electron cloud motion, using the finite difference time domain method. Then we have determined the resonance frequency values that yield an enhanced or a resonant case of optical parametric amplification, via gain factor optimization. It was observed that if the microresonator is more dispersive (has a lower polarization damping coefficient), then there are more resonance frequencies that yield an optical gain resonance. At these gain resonances, a very wideband, high-gain optical amplification seems possible in the micron scale, which, to our knowledge, has not been previously reported in the context of nonlinear wave mixing theory.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference21 articles.

1. Nonlinear Optics;Boyd Robert,2008

2. Optical Properties of Solids;Mark,2002

3. Advanced Engineering Electromagnetics;Balanis Constantine,1989

4. Fundamentals of Photonics;Saleh,2007

5. Laser Fundamentals;Silfvast William,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3