Ultrafast Fiber Laser Emitting at 2.8 µm Based on a SESAM and a Broadband FBG

Author:

Paradis Pascal1ORCID,Boilard Tommy1ORCID,Fortin Vincent1,Vallée Réal1,Bernier Martin1

Affiliation:

1. Center for Optics, Photonics and Lasers, Université Laval, Quebec, QC G1V 0A6, Canada

Abstract

Ultrafast mid-infrared fiber lasers have been intensely studied in the last decade for the generation of high harmonics, molecular spectroscopy, material processing and remote sensing. Different designs have been investigated but most of them lacked the ease of use and reliability needed for their democratization. In this paper, we demonstrate a self-starting mode-locked mid-IR erbium-doped fiber laser based on a SESAM and a broadband uniform FBG that produces pulses as short as 15 ps. Different laser cavities were tested with varying FBG peak reflectance, spectral bandwidth and active fiber length. In addition, one cavity uses a pump combiner instead of injecting free-space the pump power through the fiber tip. The results of this study confirm that the FBG spectral bandwidth can efficiently control the duration of the almost Fourier-transform-limited pulses up to a limit seemingly dictated by the presence of water vapor in the laser cavity acting as narrow spectral filters. To a lower effect, the active fiber length influences the pulse duration. Finally, the use of an all-fiber pump combiner allows for a more compact and rugged design without altering the laser performances. This study represents a step towards the development of robust mid-infrared ultrafast all-fiber lasers.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada First Research Excellence Fund

Canada Foundation for Innovation

Fonds de recherche du Québec—Nature et technologies

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3