Proposal of a Cascade Photonic Crystal XOR Logic Gate for Optical Integrated Circuits with Investigation of Fabrication Error and Optical Power Changes

Author:

Mohebzadeh-Bahabady Ahmad,Olyaee SaeedORCID

Abstract

A compact and simple structure is designed to create an all-optical XOR logic gate using a two-dimensional, photonic crystal lattice. The structure was implemented using three waveguides connected by two nano-resonators. The plane wave expansion method was used to obtain the photonic band gap and the finite-difference time-domain method was used to investigate the behavior of the electromagnetic field in the photonic crystal structure. Examining the high contrast ratio and high-speed cascade, all-optical XOR on a chip, the effects of fabrication error and the changes in the input optical power showed that the structure could be used in optical integrated circuits. The contrast ratio and data transfer rate of the cascade XOR logic gate were respectively obtained as 44.29 dB and 1.5 Tb/s. In addition, the designed structure had very small dimensions at 158.65 μm2 and required very low power to operate, which made it suitable for low-power circuits. This structure could also be used as a NOT logic gate. Therefore, an XNOR logic gate can be designed using XOR and NOT logic gates.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3