Simplified 1.5 μm Distributed Feedback Semiconductor Laser (DFB-LD) Frequency Stabilization System Based on Gas Absorption Chamber

Author:

Wang Ju1,Gao Ye1,Yu Jinlong1,Cai Ziheng1,Luo Hao1ORCID,Ma Chuang1

Affiliation:

1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

Abstract

The classical 1.5 μm band frequency-stabilized laser using acetylene gas saturated absorption can achieve high frequency stability and reproducibility, but its system design is complex and bulky. For some practical applications, a simple, compact system containing anti-interference abilities is preferred. In this study, a low-cost and simple-structured 1.5 μm frequency-stabilized laser is constructed using digital control methods, wavelength modulation technology, and acetylene gas absorption. The fiber input and output optical devices of the system significantly simplify the optical path and reduce the volume of the system. The error signal is obtained by the first-order differential method, and a combination of the high-speed comparator circuit and the microcontroller unit (MCU) is used to detect the error signal. Through the feedback control method of coarse temperature adjustment and fine current adjustment, the second-level frequency stability of the laser is stabilized within 100 kHz, that is, the frequency stability reaches 10​−10. The designed system achieved continuous and stable operation for more than 6 h, and the long-term frequency stability reached 10​−9.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3