Nanoparticle-Based Retinal Prostheses: The Effect of Shape and Size on Neuronal Coupling

Author:

Chiaravalli Greta,Lanzani GuglielmoORCID,Sacco RiccardoORCID

Abstract

The use of organic semiconductor nanoparticles (NPs) as retinal prostheses is attracting attention due to the possibility of injecting them directly into the desired tissue, with a minimally invasive surgical treatment. Polythiophene NPs localize in close proximity to the bipolar cell plasma membrane, which engulfs them, creating an intimate contact between the NP and the neuron. The intimate contact coupled with NP photoactivity are hypothesized to be the main guarantors of the electrostatic functioning of the bio-hybrid device. Since they may both be strongly affected by the geometric features of the NP, in this work, we use mathematical modeling to study the electrostatic polarization induced by light onto the NP and analyze how its spatial distribution is modified by varying the radius of the NP and its shape. Simulation results support the efficacy of the theoretical approach as a complementary virtual laboratory in the optimization of the current device and in the development of similar future NP-based technologies.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3