Overview of Addressed Fiber Bragg Structures’ Development

Author:

Agliullin Timur1ORCID,Il’In German2,Kuznetsov Artem1ORCID,Misbakhov Rinat1,Misbakhov Rustam3,Morozov Gennady1,Morozov Oleg1ORCID,Nureev Ilnur1,Sakhabutdinov Airat1ORCID

Affiliation:

1. Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., Kazan 420111, Russia

2. Department of Electronic and Quantum Means of Information Communication, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., Kazan 420111, Russia

3. Almetyevsk Branch, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 9b Stroiteli Avenue, Almetyevsk 423400, Russia

Abstract

An addressed fiber Bragg structure (AFBS) is a special type of fiber Bragg grating simultaneously performing the functions of a two-frequency radiation shaper and a sensitive element. An AFBS forms a two-frequency optical spectral response at its output, the difference frequency of which is invariant to measured physical fields and is referred to as the address frequency of the AFBS. Each of the AFBSs in the system has its own address frequency; therefore, a number of such structures can be interrogated simultaneously enabling the addressed multiplexing. In this article, we provide an overview of the theory and technology of AFBS, including the structures with three or more spectral components with various combinations of difference frequencies, both symmetrical and asymmetric. The subjects of interrogation of AFBSs, their fabrication and calibration are discussed as well. We also consider a wide range of applications in which AFBS can be used, covering such areas as oil and gas production, power engineering, transport, medicine, etc. In addition, the prospects for the further development of AFBS are proposed that mitigate the shortcomings of the current AFBSs’ state of the art and open up new possibilities of their application.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microscopic Temperature Sensor Based on End-Face Fiber-Optic Fabry–Perot Interferometer;Photonics;2024-07-30

2. Reference Sensor of Addressable Type for Qualitative and Quantitative Air Monitoring: Sensor components design;2024 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO);2024-07-01

3. Reference Sensor of Addressable Type for Qualitative and Quantitative Air Monitoring: Physical principles of design and mathematical analysis;2024 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO);2024-07-01

4. Addressed Photonic Differentiator Based on Fiber Bragg and Moire Gratings Structure;2024 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF);2024-06-03

5. Transversal load sensor on addressed fiber Bragg structure with two phase shifts;Optical Technologies for Telecommunications 2022;2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3