Enhanced Performance of a Cascaded Receiver Consisting of a DNN-Based Waveform-to-Symbol Converter and Modified NN-Based DD-LMS in CAP Underwater VLC System

Author:

Lin XianhaoORCID,Hu Fangchen,Chi NanORCID

Abstract

Underwater visible light communication (UVLC) based on LEDs has become a competitive candidate, which is able to provide high data rates, low latency and low cost for next-generation wireless communication technologies. However, it is still challenging to achieve high-speed communication because of bottleneck problems such as bandwidth limitation and linear and nonlinear distortions. Traditional Deep-learning Neural Network (DNN)-based waveform-to-symbol converter is verified to be an effective method to alleviate them, but impractical due to high complexity. To achieve a better tradeoff between communication performance and computation complexity, a cascaded receiver consisting of a DNN-based waveform-to-symbol converter and modified Neural Network (NN)-based decision-directed least mean square (DD-LMS) is then innovatively proposed. With fewer taps and nodes than the traditional converter, the front-stage converter could mitigate the majority of Inter-Symbol Interference (ISI) and signal nonlinear distortions. Then modified NN-based DD-LMS is cascaded to improve communication performance by reducing phase offset, making received constellation points more concentrated and closer to standard constellation points. Compared with the traditional converter, the cascaded receiver could achieve 89.6% of signal Vpp dynamic range with 12.4% of complexity in the 64APSK UVLC system. Moreover, the ratio of signal Vpp dynamic range and total trainable parameters is 1.24 × 10−1 mV, while that of the traditional converter is 1.95 × 10−2 mV. The cascaded receiver used in 64APSK UVLC systems is experimentally verified to achieve enhanced performance, thus as a promising scheme for future high-speed underwater VLC.

Funder

National Key Research and Development Program of China

Natural Science Foundation of China Project

Major Key Project of PCL

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3