Abstract
We investigate the generation of optical third-harmonic frequency in quadratic crystals with a nonlinear domain lattice optimized with the aid of a random number generator. In the developed Monte Carlo algorithm and numerical experiments, we consider domain thicknesses to be taking either the values d1 or d2, with d1 and d2 being the coherence lengths for the cascaded parametric interactions 2ω=ω+ω and 3ω=2ω+ω, respectively. We focus on the cases with single segments formed by equal and/or different domains, showing that frequency tripling can be achieved with high conversion efficiency from an arbitrary input wavelength. The presented approach allows one to accurately determine the optimized random alternation of domain thicknesses d1 and d2 along the propagation length.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献