Nonlinear Impairment Compensation Using Transfer Learning-Assisted Convolutional Bidirectional Long Short-Term Memory Neural Network for Coherent Optical Communication Systems

Author:

Luo Xueyuan,Bai ChenglinORCID,Chi Xinyu,Xu Hengying,Fan Yaxuan,Yang Lishan,Qin Peng,Wang Zhiguo,Lv Xiuhua

Abstract

By combining the nonlinear impairment features derived from the first-order perturbation theory, we propose a nonlinear impairment compensation (NLC) scheme based on the transfer learning-assisted convolutional bidirectional long short-term Memory (CNN-BiLSTM) neural network structure. When considering the correlation of nonlinear impairment between preceding and succeeding consecutive adjacent symbols on the current moment symbol and integrating the multidimensional feature extraction and time memory characteristics of CNN-BiLSTM, the nonlinear impairment information contained in the input feature can be fully utilized to accurately predict the nonlinear impairment showing significant compensation effect. Meanwhile, transfer learning (TL) is introduced to greatly reduce the complexity of the scheme on the basis of high compensation performance. To verify the effectiveness of the proposed scheme, we construct single-channel (SC) and 5-channel 28 GBaud polarization division multiplexing 16 quadrature amplitude modulation (PDM-16QAM)/85 GBaud PDM-64QAM simulation systems, and SC and 3-channel 28 GBaud PDM-16QAM experimental systems. The experimental results show that when compared with simple recurrent neural network (SRNN) NLC and DBP 20 steps per span (DBP20StPs), the Q-factor gain of our scheme is about 1 dB and 1.7 dB in the SC system, and about 1.1 dB and 1.5 dB in the 3-channel system at the optimal launch power, respectively. It is interesting to highlight that, by applying TL to the simulation and experimental systems, our scheme based on only 5% of the training samples can achieve compensation performance comparable to or higher quality than retraining at various launch powers.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Doctoral Research Start-up Foundation of Liaocheng University

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3