High-Efficiency and Large-Angle Homo-Metagratings for the Near-Infrared Region

Author:

Tsai Wei-Cheng1,Chang Chia-Hsun12,Yu Tai-Cherng1,Huang Yi-Hsuan1,Chow Chi-Wai1ORCID,Hong Yu-Heng2ORCID,Kuo Hao-Chung12ORCID,Huang Yao-Wei1ORCID

Affiliation:

1. Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

2. Semiconductor Research Center, Foxconn Research, Taipei 11492, Taiwan

Abstract

Compact photonic devices that integrate metasurfaces with light sources have been widely studied. However, experimental demonstrations of a higher efficiency of integration are still lacking. To enhance the efficiency of light sources integrated with metasurfaces, we employed a forward design optimization method and index matching between the light source and metasurface substrate to design metagratings. To optimize the overall diffraction efficiency, we manipulated the degrees of freedom in phase, the lattice constants, and the number of unit cells. The same material was utilized for the nanostructures and substrate (homo-metagrating) for index matching, while Si and GaAs materials were used for working at 1550 and 940 nm, respectively. The experimental homo-metagratings operating at 1550 nm and made of Si exhibited an overall average efficiency of 51.3% at diffraction angles of 60.3°. On the other hand, experimental homo-metagratings operating at 940 nm and made of GaAs exhibited an overall average efficiency of 52.4% at diffraction angles of 49.3°. This suggests that the future integration of metagratings with a polarization-specific laser can further enhance the overall diffraction efficiency.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3